= o
—_~
OpenOfficeorg

1TX20

Report

Responsible for TX20 : Eric Bachard Spring 2006



Acknowledgment

We want to thank here all the people who help us in the redaction of this report. Eric
Bachard for his precious help, his patience and his lead all along this semester. Apple for the
machines which have been very useful. Michele Valenza for his participation to the oral presentation

of our report. And finally, we thank to all the people on the channel IRC, fr.openoffice.org and
openoffice.org



Introduction

Nowaydays, the project OpenOffice.org is one of the biggest project of the opensource
community. Available for the principle OS, like Linux, Mac OS X and Windows, it is a perfect
example of what the opensource community is capable of. But, as any other sofware there is always
something to do in order to improve it. For instance, let's take the case of the Mac OS X version of
OpenOffice.org. Today, to install this version, we have to first install what we call X11. X11 is a
graphic server, responsible of all the communication between the OS and the different display
devices (screen, graphic card). Without X11, OpenOffice.org won't running at all. Of course, for a
qualified person, this is not a impossible task to install X11, but for the simple user who want only
have to install this program, it is completely different and may be he will prefer and much simpler
software to use. By this simple observation, some people of the community have decided to create a

version of OpenOffice.org running without using X11 but using instead the graphic server of Mac
OS X called Quartz.

This report has been divided into two parts. In a first time, we are going to see the
organisation of the OpenOffice.org project. Most particulary, we will see in detail the process of
creation of each new release by using CVS, and the organisation of the different modules of this
project. In the second part, we will talk about a specific module called VCL, for Visual Class
Libray. In a nutshell, VCL is the graphics engine of OpenOffice.org. Without it, you have nothing
on your screen. So we can easily understand that if we are interested by porting OpenOffice.org on
Mac OS X, this is what we have to update in order to get a version working under Quartz. As we
will see later, is has been decided to use Carbon to create the Quartz Version of OpenOffice.org. So
we will see what is Carbon, how we use it and how it is implemented in the VCL module.



Summary

I.  Organisation of the OpenOffice project:
1. Overview of the OpenOffice.org build project
2. Environment Information System (EIS)
3. How do we use CVS ?

4. Organisation of OO modules

II. VCL (Visual Class Library)
1. General description of Vcl
2. Situation of VCL in the 0Oo project
3. Aqua implementation

1. Carbon API
2. Carbon in VCL



I) Overview of the OpenOffice.org build project

OpenOffice.org project uses Concurrent Versions System (CVS). CVS is a program who
keep track of all work and all changes in a set of files, typically the source code of a software
project, and allows several developers to collaborate on the same project. CVS has become very
popular in the open-source world. It is released under the GNU General Public licence.

The major releases of OpenOffice.org are implemented on CVS branches. The development
of the next major releases is developed on HEAD of the CVS tree, the maintenance of older versions
also happens on branches.

'Ooo_STABLE 1 fmrwes_sra o645
(OO0 1.0.x) (OO0 1.1.x)

/HEAD - = OO0 20

In the OpenOffice.org environment these branches are often called codelines or master. A
master workspace represents the road to a product. For the 1.1.x codeline this result is in a cvs
branch tag called mws_srx645 which represents the latest status of this codeline. Several more tags
represents a specific milestone on this codeline (SRX645_m34, SRX645_m40). The same scheme
is applied to the 2.0 codeline (mws_src680 for the latest status, SRC680_m36 for a specific
milestone). A milestone is a MWS (Master WorkSpace) build on the way to a product. Usually
every week there will be a new milestone.

As soon as the OO0 2.0 comes close to release, a new branch for this codeline will be
created so that concurrent development of the next release can be started.

(Ooo_STABLE_|
(000 1.0.x)

/mws_srcb80
(000 2.0)

mws_srxo45
{000 1.1.x)

HEAD

OpenOffice.org is developed by more than 100 developers, it builds for more than 10
platforms, for more than 25 languages and it has more than 7 million lines of code with a plenty of
build time needed for a complete recompile. So the risk of breaking something is pretty high, even if
the comitters is sure about his changes. Due to this complexity and to the will to have at all times a
milestone available, the concept of doing any feature development and bug fixes on cvs branches
have been developped. This means that a new feature has to be developed on a cvs branch, until the
feature is complete and has been tested on at least two major platforms (usually on a Unix derivate
and Windows). The same applies for bugs fixes.



fews_branch .

/master \
. =
codeline

These branches are called in the OpenOffice.org environment child workspaces (CWS).
Since it is possible to create many child workspaces in parallel, some additional processes has been
developed to make life more easy and secure on these child workspaces. For example, the problem
of “repeated merges” is quite common in cvs. Indeed, this situation occurs frequently when
developpers are dealing with many branches in parallel.

fews_branch

/master
codeline

Many of the “repeated merge” problems can be solved before the merge back to the master
branch if you were able to bring your copy of the cvs branch up to date of the latest know stable
version of your master. For this the resynchronization action (cwsresync) command has been
introduced.

The resync mechanism is able to deal with repeated operation, so that this process can be
executed frequently. In case of a conflict has to be resolved, this will happen in the child workspace,
so the risk of having a broken master workspace is less than in the classical approach, when a
branch will be merged back to the master with the usual 'cvs update' command.

Here is a view more general on the OpenOffice.org project tree:

00Y680
000 2yz
-
SRCE80
00BEED 00CE80 00X680 ggﬁ%gg
000 2.0.2 0002.03 000 2% '
HE B B E BB TRUNK

Felb. DG May . DB e kase eve ly tiee montis C'\-"SJ’H:'EICI



2) Environment Information System (EIS)

@ Sun Environment Information System 2.0

i Child workspaces | Master Workspaces | Changes-Malls | Sourcecode | Misc | Help

It exist a web frontend where we can view the list of all child workspaces and their status
(http://eis.services.openoffice.org/EIS2/servlet/GuestLogon). This web frontend is called
Environment Information System (EIS). EIS is in fact a database where MWS and CWS data is
stored. EIS offers an friendly interface which provides a easy way to browse all the information
about the existing CWSs. It offers several views on the CWSs, sorted either by master workspaces,
milestones or releases. It's possible to search for a CWS and to view overall statistics. A click on the
CWS name will lead to a detailed overview of the selected CWS. The status is displayed, the
members of development and QA working on it and which tasks have been assigned to the CWS.
After integration of a CWS there is also a detailed list of changed files with revisions, task-ids and
authors. Another important piece of information are the 'creation milestone', 'current milestone' and
the 'integration milestone' entries. Additional fields for comments complete the view on the CWS.

Here are some screenshots of the web interface:

Child workspaces "D FIXB45
» Browse E-_100AB80
 per --{:IEICIEIEEU
Felease "DOOOEBU
- E+_1SRC680
» per MWs ..... ] approved by QA
»  per --i]fixed on master
Milestone -] integrated
» Search |1 7 new
-l |planned
. SEEED‘{!‘ ------ Pead‘_.,rfnrl:]h
»  Sratistics H- ] SRXAR44
Master Workspaces B SRX645

Changes-Mails
Sourcecode
Misc

Help

View of the different Master Workspaces on EIS



http://eis.services.openoffice.org/EIS2/servlet/GuestLogon

B - 1?: 00011
Browse ggs H;
per i 13 000 1:1:3
F'::I-:as: ..... @000 1.14
perMWws | i 1000 1.1.5
et | 1000 1.1.6

Milestone | i. @000 2.0
Search | J000201
A 1000202
EEEF-ZQ.--'. ..... Iz. OO0 203
Statistics | L. {]1000204

Master Workspaces
Changes-Mails
Sourcecode

Misc

Help

E]000 3.0

View of the different Releases on EIS

Child workspaces j gg%ﬁﬁﬁa%

Brow -

o B1-{1 SRX645
e B-L1 00ABB0
R =-_1 000680
per MWs Iél---_ImS
per : T o0020m2
Milestone &-_1m2

Search E-_Im1

H-_] FIX645

g A

seekan B SRX644

Statistics

Master Workspaces
Changes-Mails
Sourcecode

Misc

Help

View of the different Milestones on EIS

Some terms definitions :

1. planned: A CWS with this state is planned, but not yet physically existent. Thus no code has
been changed, it's not even yet decided from which milestone the CWS will be created. Having
this state available is useful for long term planning, resource acquisition etc.



2. new: CWSs with this state have been created, they do have a physical representation somewhere.
All development is done while the CWS is in this state.

3. ready for QA: The developers think they are ready. They have prepared installation sets and
submitted them to QA. If QA accepts the CWS the state is usually advanced to nominated. If
they find bugs in the new stuff or even regressions they will set the state back to new.

4. approved by OA: A special intermediate state used only for bug fix releases which need an
even more controlled approach. QA approves a CWS but program management has the final say

if and when something goes into the master.

5. nominated: Set by QA after accepting a CWS. This is the point where release engineering will
take the CWS and integrate it into the master.

6. integrated: Set by release engineering after the integration. A CWS in this state is
considered done.

7.canceled: A canceled CWS has been abandoned, no more work will be done on it.

@, Sun Enwronment Information System 2.0 Contact | Settings | Logout

e Chi rkspaces | Master Workspaces | Changes-Malls | Sourcecode | Misc | Help user

My CWSs | Browse | Search | Create CWS | SeekQA | Statistics

CLodh 7
G A - - e e e e e RS GLii7< Est.due @4y | @4l Gy .
diyedl &aﬁejr :; ::e/ l;.;:::rfl fon ?R;:::a;e Creation Milestone Milestone Integration Estimated date ready for Nomination Integration g;::e/r
Id P Status date (current) (integrated) order due date (ready for QA date date date
QA)
join patricks
- effort into . fi
2492 SRCE80 macxjoin1993 000 main new  2005-04-15 m83 useri@openoffice
tree.
000

2494 SRX645 macxjoin1153
4 records with 14 tasks.

new  2005-04-17 m53

1.1.5 user@openoffice

Status [Clhange Statistics

List of CWS belong to a developer called «user»

X Environment Information System 2.0 Contact | Ssttings | Logout

"*"'ﬂ‘“ Child workspaces | Master Workspaces | Changes-Malls | Sourcecode | Misc | Help user

My CWSs | Browse | Search | Create CWS | SeekQA | Statistics

Data for child workspace milestone_namejchildworkspace_name

General data
(= PR [~ XN Gl 7 Qg b 7 (I Clrds L (R
Milestone  Milestone  Milestone &::a;; < g:::e/r\ ;’:;‘;\ Estimated due Est. due date I?;:il:f impact  VCS1d
(created) (current) (integrated) Status P- date (ready for QA) P (creator)

000 2006-12-31 2006-12-24 Implementation 7
m133 m158 203 new User@openoffice.org User2@openoffice.org 00:00:00.0 00:00:00.0 Details Only E
1 record
Tasks
Show tasks in issuezilla
Q7 AR Qak 7
Taskld Added to CWS Added by

55022 2005-10-16 17:26:26.0 uUser
56100 2005-10-16 18:16:50.0 user
56490 2005-10-27 11:12:05.0 uUser
57252 2006-03-08 15:05:10.0 USer
4 records

KR K W

Add task
Refresh tasks without using cached data

Builds Requested
0S: Macintosh OS5 X / Product
0S: Macintosh OS5 X / Non-Product

Description of a CWS




% Sy Environment Information System 2.0

mavptens  ohild works

aces | Master Workspaces | Changes-Malls | Sourcecode | Misc | Helg

My CWSs | Browse | Search | Create CWS | SeekQA | Statistics

Depends On

Release

Status

Requested Builds

Owner

QA representative

Members

Description

macosxfondu

Columnhdl
HTMLASIAO1
JMF1
XMLPerfWriter01

allysep
000 2.0.3 ~|

Inew ~|

05: Linux (Sparc) / Product

0S: Linux (Sparc) / Non-Product
0S: FreeBSD / Product

0S: FreeBSD / Non-Product

0S5: Macintosh 0S X / Product

lericb@openoffice.org | <select to set/add entry> |
|macjogi@openoffice.o | <select to set/add entry> |
<select to set/add entry> =l

New module : add tag for it is necessary.
Include fondu in 000 for Mac OS X to automatically extract native

g J D
Creation of a new CWS




3) How do we use CVS ?

In this part, we are going to explain what are the necessary steps in order to create a new
CWS.

Creation of a childworkspace :

Before a a child workspace can be created it's necessary to checkout OpenOffice sourcecode
— preferably the milestone from which you want to create your CWS — and run configure :

$ cvs -d <cvsroot> co -rSRC680_mi5 OpenOifice
$ cd config office

$ ./configure

$ source <the configured script>

Now it's possible to create the CWS. Execute the cwscreate command.

$ cwscreate SRC680_m45 fool

This command first checks if a connection to the EIS web service is available. Then, it
updates the OpenOffice modules to the requested milestone and finally registers the freshly created
CWS with EIS.

Working with child workspaces :

The environment variable CWS_WORK_STAMP is important for the CWS tools; it must be
set to the name of your CWS. All CWS tools will refer to this environment variable to find out on
which CWS we are working :

S export CWS_WORK_STAMP=fool

Now let's assume we want to implement a feature with the task ID #i4711#' and fix the
related bugs '#i42#' and '#1666#' together in this CWS. The changes are distributed over three
modules, let's say 'sfx2', 'framework' and 'desktop'.

Adding tasks IDs to a CWS is done with the cwsaddtask tool:

S cwsaddtask 14711 142 1666

We have to not forget to assign a QA engineer to be responsible for that particular CWS. He
will test the changes according to the specifications, test plans and bug descriptions of the task IDs
which are registered in the EIS.

Now, it's time to do some coding. Add the needed modules with the cwsadd command to
the CWS:

$ cwsadd sfx2 framework desktop

The cwsadd command creates the CWS branch in these modules, updates the modules to



the branch label, tags them and finally registers the modules with the EIS. All files in the CWS
instance of the modules should now carry the CWS branch label as a sticky tag. The CWS branch

label is of the form cws_<mws—-name>_<cws—-name>, in our example it is
cws_SRC680_fool.

Committing the changes is easy. Just use the cvs commit command. The sticky tag
ensures that the changes go the CWS branch.

After we have finished our work we'll need to create an installation set. Change into the
'instsetoo’ module and build it. The installation set is then created in the output tree.

Now we want to know which files have changed in our CWS and if they can be integrated
without conflicts into the MWS. The cwsanalyze tool determines all changed files in the CWS
and does a trial merge with the MWS for a conflict analysis.

$ cd /tmp
$ cwsanalyze all

The result is a list of all changed files and a notice as to whether they can be merged back
into the MWS without conflict.

Since we have created our CWS, a lot of other CWSs have been integrated into the MWS. To be able
to judge if our changes still play well with the current state of affairs we should resynchronize our
changes with the master.

Let's say we created our CWS based on the milestone 'm45', but the latest milestone is 'm50'".
The cwsresync command can resynchronize single files directly in your CWS copy. But, if we
plan to resynchronize a whole child workspace, it's far safer to do the CVS operations in a scratch
directory. Here the scratch directory is /tmp.

$ cd /tmp
$ cwsresync -m m50 all
solve conflicts
cwsresync —-c all
cd <workspace>
update files in your CWS copy
cwsresync -1 m50
cwsresync —-r (optional)
cd <workspace>/config_office
./configure
source <configured script>

Uy U

Ur Uy Uy Uy U

The first command merges the changes from minor 'm45' to minor 'm50' on the MWS into
the CWS. This might lead to conflicts, we need to solve them before we commit the merges onto the
CWS branch. If every conflict is solved then we commit all changes with the cwsresync -c
all command.

Next we update our modules and the current milestone information with the cwsresync
-1 command. Finally we can remove the module output trees with cwsresync -r.

The cwsresync command is smart enough to avoid the dreaded 'repeated-merge-
syndrome'. This is done by keeping an administrative tag called 'anchor tag'. The anchor tag for our



example is CWS_SRC680_FOO1_ANCHOR.
Now we can rebuild our stuff and hand it over to the responsible QA engineer. If everything
is okay he/she will approve the CWS and nominate it for integration. Release engineering then takes

the CWS and integrates it with the cwsintegrate all command into the MWS.

All revision information including task |IDs and authors are finally transferred to EIS. A
CWS has reached the end of its life when it is successfully integrated.

4. Organisation of OO modules

What is a module ?

A module is a set of files sorted like this:

Directory Description
module-name The root directory of the module.
module- Contains the header files and interface descriptions for the module.
name/inc
module- Contains the file d . 1st. This file lists all the deliverables of the module. It
name/pr j details where the deliverables come from and where they go to.
module- Contains source files and a makefile to compile the source.
name/source
module- Linking to binaries occurs here. This directory contains a makefile that specifies
name/util how to build the module libraries or binaries.
module- The name of this directory comes from the INPATH variable. The INPATH

name/SINPATH variable derives from the OUTPATH and PROEXT variables. For example, a
directory called module-name/unx1ngi3 . pro may exist or will be created
when starting to build this platform.

All compiled objects, libraries, and binaries are built into this directory. From
there they are delivered to solver.

module- Contains platform-independent output, such as resource files, . jar files, and
name/common .p . zip files.

ro

module- Contains typical resource files such as bitmaps, icons, and cursor files.
name/res

module- Contains View Definition Interface files.

name/sdi

module- Contains the UNO IDL compiler for . 1d1 files, supplied with backends for
name/unoidl  C++, Java, documentation, and so on.

module- Contains test applications.

name/workben

module- Contains implementation files specific to Macintosh (with X11 | without X11

name/mac | aqua

module- Contains implementation files specific to X Windows System.
name/unx
module- Contains implementation files specific to Win32.



name/win

The following table lists the subdirectories of a typical output directory, and describes the
contents of those subdirectories.

Directory Description
$SINPATH Root directory of the output structure.
bin Contains binary and files.
class Contains Java-compiled class and/or jar files.
dbo In the past, this directory contained debug information from the Writer project only. It is
obsolete now.
dib
dlb In the past, this directory contained debug information from the Writer project only. It is
obsolete now.
doc Contains generated HTML.
dso In the past, this directory contained debug information from the Writer project only. It is
obsolete now.
idl Contains Interface definition Language (IDL) files.
inc Contains project interface header files.
lib Can contain the following files:
+ .a - Contains static UNIX libraries.
+ .so - Contains shared UNIX libraries.
.1ib - On UNIX systems, contains a list of object files. On Win32 systems,
contains a collection of object files.
+ .dump - Contains the symbols within a library.
misc Contains a record of some of the commands run by the make process. This also contains
the generated dependency description for this module. Typically, tools such as
makedep, javadep, or rscdep generate this description. Also contains generated
Java files, in a java subdirectory.
obj Contains object files.
res Contains resource files. These are organized in subdirectories named according to
language codes. There are bitmaps in these subdirectories.
slb Contains . 11D files. These list the objects to be compiled into a shared library. On
Win32 systems, the . 1ib files are a collection of objects.
slo The shared library object (s10) directory contains object files that appear in shared
libraries. Objects that appear in shared libraries appear in both the obj and s1o
directories.
Srs Contains string resource files.

WWW Contains files published on the internet



Now, we undestand, how the OpenOffice.org project is organised and how it is built, we can
now take a deeper look into a specific module : the Visual Class Library

II. VCL

1. General description of Vel

Visual Class Library (VCL) is the window management and basic control library of
OpenOffice.org. It includes the system abstraction layer for the user interface components such as:

- Windows
- Printing
« Fonts

The vcl project is divided in several parts:
vcl/source/app Contains the base application functionality such as:

« Application Class

+ Main
+ Timer
- Config
« Sound
vcl/source/gdi Contains all independent output functionality such as:
- Bitmap
« Region
« Polygon
+ Gradient
+ Font

+ Graphics output
vcl/source/window  Contain base window handling and some generic Windows classes.
vcl/source/control Contains basic controls such as:

- Edit

« FixedText

« PushButton
«  CheckBox

« RadioButton

vcl/ [aqua|unx|win] Contains the Graphics System Layer (GSL). This is the connection
from the independent classes to the system APIs. For instance, on Mac OS X system, this is the



Carbon API which is used and on Unix family system, this is the classical X11 API which is used.

Common part :

- in grey on right. The result will be a non architecture dependant library, built in all cases : for
instance, libvcl680mxi.dylib on Mac Intel.

Specific part :

- Light yellow : aqua part will only concern Mac OS X (non X11)
- Green : Windows part

- Light Blue : Unix ( Linux, Solaris or current Mac OS X X11)

vel inc
prj
source  app
control
ex
gdi
glyphs
helper
src
uno 5
window
aqua “inc
source "app
qdi

src

app
gdi
se
window
unx inc
dummy
gtk  app
gdi
source
kde
source app
qgdi
inc
plugadapt
test ] src
window
ga 'mmplex ]
testdocuments’

workben



2. Situation of VCL in the 000 p
VL \

This diagramm shows the dependances of VLC (each line corresponds to a step in the build time)

 psprint || ilSnpool | | sot |
unotools | rsc | wmsex3 | | bridges
. wols | | cliure | | regexp |
e | we
 cpputools | jvmfwk | basegfx \ ucbhelper | rvpapi | rdbmaker = sax |
. jvmacces | | cppuhelper | | unoil | | jur | ilsnuil
offuh ridljar
. codemaker | o offapi |
udkapi
idlc
registry
cppu vos salhelper store
sal libxml2
external zlib expat xml2emp
 solools

boost nas freetype icu x11_extensions sndfile portaudio stlport



This diagram has been built from our dependencies tree program. (see on the CD-ROM)

3. Aqua implementation

1. Carbon API
For porting OpenOffice.org on Aqua, it has been decided to use Carbon instead of Cocoa. In
this part we are going to first see, what is Carbon. And in a second time, we will see how works the

Carbon API, by looking at an application build with this API.

What's Carbon ?

Let's go back in 1998. This year at the World Wide Developers Conference, Apple the
introduction of a new operating system, to be known as Mac OS X. Mac OS X, the first version of
which was released on 24 March 2001 and it's not just another Mac OS update; it is a completely
new operating system complete with "modern" operating system features such as pre-emptive
multitasking and protected memory. It features a completely new user interface, called Aqua, whose
appearance and behavior differs significantly from that of the original Mac OS (represented in its
latest, and no doubt last, incarnation by Mac OS 9).



F @ File Edit View 5Special Help

4:15:47 AM 7

O ——
JEiIe Edit Yiew Favorites Tools Help

a4 @ & @

Apple Menu Application  Assistant  Contextual

System Folder

O calculator

Iltems Support Menu ltems
Control Control Cesktop  Documents Downloads

Fanels ... Strip ...

5 % 4 & &

Extensions Extensions inde

'n
o
-
o
=
—

—m
=
=
o
=
m
=

(Disahled) tems Information
@
Preferences Script Shutdown  Shutdown Startup Startup
Functions lterms ltems (... ltems Iterms (...
Q @ @ T
AboutThis Computer Stuffitd Systerm  Temporary Tex Utilities  Trash Bin
Delux... Internet ... Encodings
T s =
s | 2
s = I
/ DESKTOP  mufalder] Chuck's Clinhaared MarTD Crronanl
Print ... F= MyPad - Untitled =H
Yersion: Mac 058
Built-in Memory: S6MB
Yirtual Memory: 232mMB
Largest Unused Block: 147 MB ™ & @ Michael Mallory, 1996-2000
Total Disk Space: 3065 MB
Free DiskSpace: 701 MB
Mac OS 9
" @ surfDude File Edit View Co Window Help © 0 ox S M 3 B 4) saolirm L O
== |
1

=/ John Wells" iMac G5

@ ‘eo0e6 digg =)
E] @ 2 http:/ fwww.digg.com/ Q- Google ) £

u e iMac G5 Netwerk dinn

£ inago

;v,é§ Applications

@ Documents

1 vounioass latest front page news
E Movies 4 ! i ;i
49 iTunes may lose labels and increase prices I r stori
é Music S ‘submitied by sabS30BS § hours 22 minutes ago (via hitp:www. nytimes.com/2005/08...) e ——
[ . — Due to recent disputes with record companies, iTunes Music Store may have to submit a new link
[ Pictures 9931 | ingrease their popular 99 cents per song charge or risk losing record labels.
£ i 3 comments | biog this | catogory: apple | [provem? | el promoted siodos
by category:
45 HOW-TO: Portable car pc Can
aggs | [IE] suomitea by Abertpacing 11 nours ago (vi tpswaw hackady comienty. ) [ apoie
soqy | T008Y'S project comes from reader Douglas J. Hickok. A practioal, portable car [ geals
=== = 3 items 2201 | gomputer design it is intended to be easy to use in the car, but also easily e
removable. Tt
<) 1 comment | bog s | catogory: mods e v
([ haroware
. ) Clnks
71 Listof Windows XP Commands
- submitted by SJSDring0 20 hours 54 minutes ago (via hitp:/iwww SS64.comintl) (5 tinuiunic
wnqu | TS Site has a decent size list of Windows XP command prompt commands. (1 mogs 4
2291 | Check it out! (3 movies i
Z
' P 7 = 7= D
3 - 171 O | ®

Mac OS X



Mac OS X runs on G3 and G4 PowerPC machines only, meaning that machines based on PowerPC
604 and 603 microprocessors must necessarily remain with Mac OS 9 and earlier. A large installed
base of these latter machines will no doubt remain for many years to come. In addition, it is likely
that many owners of machines capable of running Mac OS X will nonetheless remain with Mac OS
9 and earlier. In these circumstances, it was perceived as all but essential that programs written to
take advantage of Mac OS X's advanced features also be capable of running on Mac OS 8 and 9
without modification. In this scope, Apple has devised the means whereby this can be achieved,
namely, the Carbon API.

Carbon is a set of C APIs offering developers an user interface tool kit, event handling, the
Quartz 2D graphics library (we will see a little bit later what is it), and multiprocessing support.
Developers have access to other C and C++ APIs, such as the OpenGL drawing system too. This
API derived from earlier Mac OS APIs which have been modified or extended to take advantage of
new Mac OS X features. Originally designed to provide a gentle migration path for developers
transitioning from Mac OS 9 to Mac OS X.

Carbon is one of several application environments available on Mac OS X as we can see on

the following diagram:
-
Java
Carbon E/Eoma E/UD“J
~ OuickTime

Application Services
Kernel environment

Core Services

These other environments include:
« Cocoa : the object-oriented interface for writing only Mac OS X applications in Objective-C.
« Java: a JDK-compliant virtual machine for running Java applications.

These environments depend on the same application and core services for their operation,
and the underlying services rely on Darwin (Apple's open-source core operating system) and the
Mach kernel.

Carbon contains thousands of functions, data structures, and constants. Related functions
and data structures are organized into functional groups, usually referred to as managers or services.
For example, the Window Manager contains functions and data structures that let you create,
remove, and otherwise manipulate application windows. The Event Manager contains functions that
let you create, remove and manipulate events, such as mouse events, keyboard events, in your
application.

A further advantage of Carbon is that existing applications can be "carbonized" with much
less effort that would be required to completely rewrite them for Mac OS X using the Cocoa API.

What's is Quartz ?




A little bit before, we talked about the Quartz Engine 2D. But what is it exactly ?

In fact, every time you move, resize and scroll a window, you're using Quartz Extreme
window compositor. This engine uses OpenGL technology to convert each window into a textures,
then sends it to the graphics card to render on screen. Quartz 2D, is one component of Quartz
Extreme. It 1s the primary graphics library in Mac OS X and it succeed to QuickDraw, which was
used in earlier versions of Mac OS. Quartz 2D is based on PostScript and PDF. It provides access
to features such as transparency layers, offscreen rendering, PDF document creation, .... The Quartz
2D API is part of the Core Graphics Framework. We'll see that every functions using to draw
something on a window begins by CG.

Quartz Extreme Compositor Architecture

Quartz2D | - Graphics  WISC
Quartz Card ;

Ll leb ) - Quartz 2D | Window Pixels :
| Extreme e
Frame Ber-
Buffer |
E—— ™

Openci |
auiime |

We are now going to take a deeper a look on how we use the Carbon API both to draw
objects on a window which has been created and to handle events. For illustrate this part, we will
insert some source code using the Carbon API. All source codes have been written with the Mac OS
application Xcode. All we'll see just after is just a little introduction to Carbon. We are going only to
scratch the surface. For more informations and more details the website http://developer.apple.com
can be very helpful to understand the whole possibilty of Quartz.

How do we create a window ?

To create a window, the preferred method is to call the function CreateNewWindow.

OSStatus CreateNewWindow (
WindowClass windowClass,
WindowAttributes attributes,
const Rect * contentBounds,
WindowRef * outWindow) ;

Parameters “windowClass” and “attributes” define properties of the created window. A
window can only have one class but can have several attributes.

Attributes are added like this:

WindowAttributes windowAttrs = kWindowStandardDocumentAttributes |
kWindowStandardHandlerAttribute | kWindowInWindowMenuAttribute;

List of classes: see Annex 1

List of Attributes: see Annex 2


http://developer.apple.com/
http://developer.apple.com/

The contentBounds parameter is a structure describing the global coordinates of the content
region.

SetRect (&contentBounds, LeftTop, Right, Bottom);

The last parameters “WindowRef * outWindow” will contains a reference to the new window
after the execution of the function.

The created window (outWindow) is invisible and placed at the front of the window list. In order to
display it, the function “void ShowWindow ( WindowRef outWindow)” could be used.



Window examples:

Class:

Attributes:

Class:

Attributes:

Class:

Attributes:

Class:

Attributes:

kAlertWindowClass
kWindowNoAttributes

kDocumentWindowClass
kWindowNoAttributes

kDocumentWindowClass
kWindowStandardFloatingAttributes

kDocumentWindowClass
kWindowNoAttributes
kWindowStandardDocumentAttributes
kWindowLiveResizeAttributes

YYD

806




In Connect 4 :

In our program, the function p4CreateNewWindow has been written to deal with all of this.

WindowRef window=NULL;

// Class and Attributes for a floating and non-resizable window.

WindowClass windowClass = kDocumentWindowClass;
WindowAttributes attributes = kWindowStandardHandlerAttribute ;
attributes |= kWindowStandardFloatingAttributes ;

// Window size
Rect contentBounds;

// Set content rectangle order : Left, Top,Right,Bottom

SetRect (&contentBounds, 100,100,100+WindowWidth, 100+WindowHeight) ;
CreateNewWindow (windowClass,attributes, &contentBounds, &window) ;

// diplay the window

ShowWindow ( window ) ;

How do we create menus ?

In order to create a new menu, the function CreateNewMenu() has to be called :

OSStatus CreateNewMenu (
MenuID inMenulD,
MenuAttributes inMenuAttributes,
MenuRef * Menu );

The inMenuID parameter is used to reference the Menu with a number.
The inMenuAttributes parameter gives attributes of the created menu. (see in Annexe 3)
The last one, MenuRef, contains the pointer of the created menu after the function’s execution.

The next step is to give a name to the menu like this :
SetMenuTitleWithCFString (MenuRef Menu, CFSStringRef inString)
To obtain a string in CFSStringRef type, we use the function

CFSStringRef CFSTR(const char *cStr)

Now, the menu is created and it has a name, so we will add it in the menu bar :

void InsertMenu(
MenuRef Menu,
MenuID BeforelD ) // Menu ID of the previous menu

After that, we will add items to it. The function used is:

InsertMenultemTextWithCFString (
MenuRef Menu,
CFStringRef ItemName,
MenultemIndex inAfterItem, // Item ID of the next one
Menultemttributes inAttributes,
MenuCommand inCommandID) ; // ID of the current Item



In order to have many menus, we have to repeat all these operations.

Example:

// Menu 1
MenuRef Menul;

CreateNewMenu(1l, 0, &Menul); // 1: Menu ID O0: attribute(s), &Menul: Created menu

SetMenuTitleWithCFString (Menul,CFSTR("Menu 1")); // Set menu name
// Insert the menu Menul after the menu which has the ID 0

InsertMenu (Menul, 0); //item
// Item 1 is put after item 0 (which doesn't exist yet)
InsertMenultemTextWithCFString (Menul, CFSTR("Item 1"),0,0,1);
// Item 2 is put after item 1
InsertMenultemTextWithCFString (Menul, CESTR("Item 2"),1,0,2);
// Item 3 is put after item 2
InsertMenultemTextWithCFString (Menul, CFSTR("Item 3"),2,0,3);

// Menu 2

MenuRef Menu?2;

CreateNewMenu (2, 0, &Menu?2) ;

SetMenuTitleWithCFString (Menu2,CFSTR("Menu 2"));

InsertMenu (Menu2,0);
//item
InsertMenultemTextWithCFString (Menu2,CFSTR("Item 1"),0,0,
InsertMenultemTextWithCFString (Menu2,CFSTR("Item 2"),1,0,

)
)

4
4

N -

E'i; MyApplication

Item 1 :
806 o=

Item 3



How do we handle events with Carbon ?

Events are the foundation of all Carbon programming. Each time the user clicks the mouse,
types a character from the keyboard, or chooses a command from a menu, you’re notified by means
of an event. When one of your windows needs to be redrawn, moved, or resized, your application
receives an event telling you to perform the operation. When your program becomes the active
(foreground) application or moves to the background in favor of another, or when another
application starts up or quits, you receive an event informing you of the fact. Just about everything a
typical Carbon program does, whether interacting with the user or communicating with the system,
takes place in response to an event.

The Carbon Event Manager is the preferred interface for handling events in Carbon
applications. You can use this interface to handle events generated in response to user input as well
as to create your own custom events.

Some of the types of events that the Carbon Event Manager can handle include the
following:

« Window events: resizing, closing, activation, moving, window updates, and so on.

« Menu events: menu tracking and selection, keyboard shortcuts, and so on.

« Control events: activation, selection, dragging, changes in user focus, and so on.

« Mouse events: mouse-up, mouse-down, mouse movement, multiple clicks, multiple buttons,
dragging, chording, rollover states, scroll wheel operation, and so on.

« Text and keyboard events: Unicode or Macintosh-encoded text input and raw keyboard
presses.

« Application events: application activation, deactivation, requests to quit, and so on.

« Apple events

« Volume events: insertion or ejection of CDs and disks.

« Tablet events: tablet proximity and movement.

Events are transmitted to an Event Loop by the API (Carbon) which replaces them in the
Event Queue. It is like a stack and our Application will treat them one after the others in the
chronologic order. The application can propagate an event up in hierarchy or call the next event in
the stack.



Event

quaLs iﬁpmmmmn
|
|
[
Flace event [
o GueLs [
[
- Fﬂ"r'E;: L Frapagate avent
Pull : g I~ up hierarchy
gventand, | _ _ if necessary
L T
Event i

loop

I

Window Server

0

Events Karnal

Each Carbon event is defined by an event class (for example, mouse or window events) as
well as an event kind (for example, a mouse-down event).

All of the available event classes and kinds are designated by constants defined in the
Universal Interfaces header file carbonEvents.h. (See in Annexe 4 for a non-exhaustive list)

The API transmits Event to the event loop in condition that we have install Event handler
before launching the loop. In practical, we need to say to the API which specific event we want to

transmit to our program. If nothing is specified, the event queue will always be empty.

The standard function for installing event handler is :

OSStatus InstallEventHandler (EventTargetRef target,
EventHandlerUPP handlerProc,
UInt32 numTypes,
const EventTypeSpec* typelist,
void* userData,
EventHandlerRef* handlerRef);

The parameters of the functions are the following:

+ Target: The event target to register your handler with.

+ HandlerProc: A pointer to your event handler function. The function
NewEventHandlerUPP (FunctionName) is used to get the function’s pointer

« numTypes: The number of events you are registering for.

+ typeList:A pointer to an array of EventTypeSpec entries representing the event you
are interested in.



Example for 2 types:

EventTypeSpec eventTypes|[2];

eventTypes[0] .eventClass = kEventClassKeyboard;
eventTypes|[0] .eventKind = kEventRawKeyDown;

eventTypes[1l].eventClass = kEventClassKeyboard;
eventTypes|[1l].eventKind kEventRawKeyRepeat;

InstallApplicationEventHandler (handlerUPP, 2,
eventTypes, NULL, NULL);

+ userData: The value you pass in this parameter is passed to your event handler
function when it is called.

« handlerRef: Pointer which will contain the event handler reference. It will be used
later if we want to remove the handler.

In Connect 4:

In our program, the function InstallMouseEvent has been written to deal with all of
this. We need to know when a player clicks with the mouse so we have installed an event handler on
the mouse: kEventClassMouse, with event kind kEventMouseDown. The standard function
for installing event handler is InstallEventHandler but for convenience, we prefer use a
specific function: InstallWindowEventHandler

InstallWindowEventHandler (

WindowRef theWindow,
EventHandlerUPP handlerUPP,
UInt32 numTypes,
const EventTypeSpec* typelist,
void* userData,
EventHandlerRef* &handlerRef );

Installation of the mouse event handler:
void InstallMouseEvent (p4_t* p4)
{

EventTypeSpec eventType;

// Set event class

eventType.eventClass = kEventClassMouse;
// Set event kind
eventType.eventKind = kEventMouseDown;

InstallWindowEventHandler (
p4->window,
NewEventHandlerUPP (mouse_event),
1,
&eventType,
p4,
&p4->mouse_event) ;



After having installed some event handler, the Event loop has to be launched in order to
begin to record events. The function which runs the event loop is:
void RunApplicationEventLoop ()

The function which quits the event loop is:
void QuitApplicationEventLoop() ;

During the event loop, the application can install new handler or uninstall old one with this
function:

OSStatus RemoveEventHandler (
EventHandlerRef inHandlerRef );

There are other Carbon functions which are very useful, such as:

« AddEventTypesToHandler (..) and RemoveEventTypesFromHandler (..):
Change dynamically which events you want your handler to respond to.

« CallNextEventHandler (..) : Call the next event in the event stack.

+ GetCurrentEventQueue (..) GetMainEventQueue (..) : Obtain the event queue
for the current (main application) thread.

« PostEventToQueue(..), RemoveEventFromQueue(..) : Add or Remove an
event from the event queue.

« IsEventInQueue (..): Determine whether an event is in a particular queue.

+ FlushEventsMatchingListFromQueue (..) : Remove events from the event queue
by kind and class.

« FlushSpecificEventFromQueue(..) : Remove specified events from the event
queue.

+ FlushEventQueue (..) : Remove all events from the event queue.

+ FindSpecifidEventInQueue (..) : Find specific event in the event queue.

+  GetNumEventsInQueue (..) : Return the number of events in the event queue.

In Connect 4:
File: main.c

In the main function, we have created a window and installed a mouse event handler on it.
So, we can now launch the event loop to begin interaction with players.

RunApplicationEventLoop () ;
File: event/event.c

In this case, the player 2 wins the game. We don’t need to keep on catching events from the
mouse, so we remove the handler on the event “mouse_event”.

Note: At this time, there is no event handler installed, so the player can only move the
window, reduce it or close it.

if(win(p4->t,péd->player))

{
MyDrawText (p4->window, "Player 2 wins" ,180,20,30);
RemoveEventHandler (p4->mouse_event) ;



At the end of the mouse_event function, we remove all events in the stack. We do that to
avoid bugs: if the player clicks on an empty box during the computer's turn, the program will first
draw the choice of the computer, and just after go on to the next event in the stack: the “non-
wanted” choice of the player.

FlushEventQueue (GetMainEventQueue ());

After that, we wait the next event:

CallNextEventHandler ( handlerRef, event);

To create an event handler, we use the following function:

static OSStatus MonitorHandler (
EventHandlerCallRef inCaller,
EventRef inEvent,
void* inRefcon ) { /* Code */ '}

+ InCaller: Reference of the event handler called

+  InEvent:Reference of the event in treatment

« InRefcon: The value you pass in this parameter is passed to your event handler
function when it is called.

In our Connect 4, we use this for the function mouse_event.

Many events require more information than just the basic event to be truly useful. For example,
knowing that the mouse was clicked is usually not very interesting unless you know where the click
occurred. This additional information is embedded in the event reference structure, and you need to
call the function GetEventParameter to obtain it. These additional parameters are identified by
parameter name and type.

OSStatus GetEventParameter (
EventRef inEvent,
EventParamName inName,
EventParamType inDesiredType,
EventParamType * outActualType,
UInt32 inBufferSize,
UInt32 * outActualSize,
void * outData );

A mouse-down event, for example, has four event parameters:

s kEventParamMouseLocation, a point (parameter type typeQDPoint) giving the screen
coordinates at which the mouse button was pressed

s kEventParamMouseButton, an integer code (parameter type typeMouseButton) identifying
which button was pressed (allowing support for a one-, two-, or three-button mouse)

* kEventParamKeyModifiers, a set of flag bits (parameter type typeUInt32) telling which
modifier keys, if any, were being held down at the time the button was pressed

s kEventParamClickCount, an integer (parameter type typeUInt32) telling how many times
the button was clicked in the same location (1 for a single click, 2 for a double click, and so
on)



In Connect 4:

When the event “mouse_event” is detected, we need to know where the player has
clicked, so we get back the mouse position like this:

Point wheresMyMouse;

// Give the Mouse position in the var wheresMyMouse from the top left
corner of the screen

GetEventParameter ( event, kEventParamMouseLocation, typeQDPoint, NULL,
sizeof (Point), NULL, &wheresMyMouse);

How do we draw objects on a window with Carbon ?

Let's begin by taking a look at a little example:

ene Draw With QDCantext

For create this window and theses two rectangles, first, we have to create an new carbon
application in XCode. After that we have to writting the following piece of code :

void MyDrawInWindow (WindowRef window)

{
CGContextRef myContext;
SetPortWindowPort (window) ;
QODBeginCGContext (GetWindowPort (window), &myContext);

/* You put your drawing code here
*/

CGContextFlush (myContext) ;
QDEndCGContext (GetWindowPort (window), &myContext);

This function is designed to draw objects in the window. In the function main, the function
MyDrawInWindow is called like that :

int main(int argc, char* argvl[])
{

WindowRef window;



/x oo K/

MyDrawInWindow (window) ;
RunApplicationEventLoop () ;

/* o %/}

In this little example, there are some important functions to deal with. These function are the
following:

+ CGContextRef defines a Quartz 2D drawing environment.

« SetPortWindowPort sets the current graphics port to the window port.

+ QODBeginCGContext obtains a graphics context for a window port and signals the
beginning of Quartz 2D drawing calls. This function allow us to use Quartz function inside
QuickDraw. It is a simpler way to use Quartz

+ CGContextFlush forces all pending drawing operations in a window graphics context to
be rendered immediately to the destination device. We must call this function when you
obtain a graphics context using the function QDBeginCGContext.

« ODEndCGContext signals the end of Quartz 2D drawing calls and restores the window
port

Now, we are going to see, some specific methods to draw objects in a window.

How do we draw a text ? :

To draw a text you need to perform these following tasks:

+ Set the font and font size.

+ Set the text drawing mode.

- Set other items as needed as for instance, stroke color, fill color.

- Set up a text matrix if you want to translate, rotate, or scale the text space.
« Draw the text.

We want to create this window :

ana Window




For this, we are going to create a function MyDrawText :

void MyDrawText (WindowRef window, CGRect contextRect);

In the function main, we insert the following piece of code :

int main(int argc, char* argvl[])

{

WindowRef window;
CGRect contextRect;

VAR

MyDrawText (window, contextRect);
RunApplicationEventLoop () ;

/* o %/}

This is the code of the function itself (this function takes as parameters a graphics context and a
rectangle to draw to) :

void MyDrawText (CGRect contextRect, CGContextRef myContext)

{

float w, hj;
w = contextRect.size.width;
h = contextRect.size.height;

CGAffineTransform myTextTransform;

CGContextSelectFont (myContext, "Times-Bold", h/10, kCGEncodingMacRoman) ;
CGContextSetCharacterSpacing (myContext, 10);

CGContextSetTextDrawingMode (myContext, kCGTextFillStroke);
CGContextSetRGBFillColor (myContext, 0, 1, 0, .5);
CGContextSetRGBStrokeColor (myContext, 0, 0, 1, 1);

myTextTransform = CGAffineTransformMakeRotation (radians (45));
CGContextSetTextMatrix (myContext, myTextTransform);
CGContextShowTextAtPoint (myContext, 40, 0, "Quartz 2D", 9);

Let's take a look the Quartz functions include in this piece of code :
CGAffineTransform stores informations for affine transforms.
CGContextSelectFont sets the font to Times Bold and the font size to the height of the
page rectangle divided by 10. In this example, the text is drawn into a resizeable window.
When the user resizes the window, the text resizes as well. The encoding is set to
kCGEncodingMacRoman (MacRoman is an ASCII variant originally created for use in the
Mac OS, in which characters 127 and lower are ASCII, and characters 128 and higher are
non-English characters and symbols).

CGContextSetCharacterSpacing sets the character spacing to 10 text space units.
CGContextSetTextDrawingMode sets the text drawing mode.
CGContextSetRGBStrokeColor sets the fill color.
CGContextSetRGBStrokeColor sets the stroke color.
CGAffineTransformMakeRotation creates an affine transform that performs a 45
degree rotation.

CGContextSetTextMat rix sets the text matrix to the transform created in the last step.
CGContextShowTextAtPoint draws the text, passing the x- and y-coordinates in text
space to start the drawing (40, 0), an array of characters to draw, and a value that specifies



the length of the text array. In this case, you pass a C-style string and the value 9 to specify
the number of characters.

How do we construct and draw shapes ?

First, we have to see the notion of path. A path consists of straight lines, curves, or both. It
can be open or closed. A path can be a line, circle, rectangle or a more complex shape. Path creation
and path painting are separate tasks. First you create a path and when you want to render a path, you

request Quartz to paint it.

Some examples of path

When you want to construct a path in a graphics context, you signal Quartz by calling the
function CGContextBeginPath.

void CGContextBeginPath (CGContextRef context);

Next, you set the starting point for the first shape in the path by calling the function
CGContextMoveToPoint.

void CGContextMoveToPoint (CGContextRef context, float x, float vy);

After you establish the first point, you can add lines, arcs, curves, rectangles, or anything you
want, to the path.

When you want to close a subpath within a path, call the function
CGContextClosePath to connect the current point to the starting point.

void CGContextClosePath (CGContextRef context);

How do we paint a path ?



http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/index.html#//apple_ref/doc/uid/TP30000950
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/index.html#//apple_ref/doc/uid/TP30000950
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/index.html#//apple_ref/doc/uid/TP30000950

You can paint the current path by stroking or filling or both. Stroking paints a line that

straddles the path. Filling paints the area contained within the path. Quartz has functions that let you
stroke a path, fill a path, or both stroke and fill a path.

Functions that affect parameters stroking :

CGContextSetLineWidth : Sets the line width for a graphics context
CGContextSetLinedJoin : Sets the style for the joins of connected lines in a graphics
context

CGContextSetLineCap : Sets the style for the endpoints of lines in a graphics context
CGContextSetMiterLimit : Sets the miter limit for the joins of connected lines in a
graphics context

CGContextSetLineDash : Sets the pattern for dashed lines in a graphics context
CGContextSetStrokeColorSpace : Sets the stroke color space in a graphics context
CGContextSetStrokeColor : Sets the current stroke color
CGContextSetStrokePattern : Sets the stroke pattern in the specified graphics
context

Functions for stroking a path :

CGContextStrokePath : Strokes the current path

CGContextStrokeRect : Strokes the specified rectangle
CGContextStrokeRectWithWidth : Strokes the specified rectangle, using the
specified line width

CGContextStrokeEllipseInRect : Strokes an ellipse that fits inside the specified
rectangle

CGContextStrokeLineSegments : Strokes a sequence of lines

There are two ways Quartz can calculate the fill area. Simple paths such as ovals and

rectangles have a well-defined area. But if your path is composed of overlapping segments, such as
the concentric circles there are two rules you can use to determine the fill area:

The default fill rule is called the nonzero winding number rule : To determine whether a
specific point should be painted, start at the point and draw a line beyond the bounds of the
drawing. Starting with a count of 0, add 1 to the count every time a path segment crosses the
line from left to right, and subtract 1 every time a path segment crosses the line from right to
left. If the result is O, the point is not painted. Otherwise, the point is painted

The even-odd rule : To determine whether a specific point should be painted, start at the

point and draw a line beyond the bounds of the drawing. Count the number of path segments
that the line crosses. If the result is odd, the point is painted. If the result is even, the point is

- @0 00

Winding-numkbser Even-odd

The following functions are used to fill a path :


http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/doc/c_ref/CGContextSetLineWidth

« GContextEOFillPath : Fills the current path using the even-odd rule

+ CGContextFillPath : Fills the current path using the non-zero winding number rule

+ CGContextFillRect : Fills the area that fits inside the specified rectangle

+ CGContextFillRects : Fills the areas that fits inside the specified rectangles

« CGContextFillEllipseInRect : Fills an ellipse that fits inside the specified
rectangle.

How do we draw some specific shape ?

/L) '

A routine that constructs an arc path :

Arcs

void pathForArc (CGContextRef context, CGRect r, int startAngle, int arcAngle)
{
float start, end;
CGContextSaveGState (context);
CGContextTranslateCTM(context, r.origin.x + r.size.width/2, r.origin.y +
r.size.height/2);
CGContextScaleCTM(context, r.size.width/2, r.size.height/2);
if (arcAngle > 0)

start = (90 - startAngle - arcAngle) * M_PI / 180;
end = (90 - startAngle) * M_PI / 180;
}
else
{
start = (90 - startAngle) * M_PI / 180;
end = (90 - startAngle - arcAngle) * M_PI / 180;

}

CGContextAddArc (context, 0, 0, 1, start, end, false);
CGContextRestoreGState (context) ;

A routine that strokes an arc :

void strokeArc (CGContextRef context, CGRect r, int startAngle, int arcAngle)
{

CGContextBeginPath (context);

pathForArc (context,r,startAngle,arcAngle);

CGContextStrokePath (context) ;



A routine that fills an arc

void fillArc (CGContextRef context, CGRect r, int startAngle, int arcAngle)

{
CGContextBeginPath (context);
CGContextMoveToPoint (context, r.origin.x + r.size.width/2, r.origin.y +
r.size.height/2);
pathForArc (context,r,startAngle,arcAngle);
CGContextClosePath (context);
CGContextFillPath (context);

Ovales

A routine that constructs an oval path :

void addOvalToPath (CGContextRef context, CGRect r)

{

CGContextSaveGState (context) ;
CGContextTranslateCTM(context, r.origin.x + r.size.width/2,r.origin.y +

r.size.height/2);
CGContextScaleCTM(context, r.size.width/2, r.size.height/2);
CGContextBeginPath (context) ;
CGContextAddArc (context, 0, 0, 1, 0, 2*pi, true);
CGContextRestoreGState (context) ;

A routine that fills an oval :

void fillOval (CGContextRef context, CGRect r)

{
/* Define the color here */
CGContextSetRGBFillColor (context, 1, 0, 0, 1);
addOvalToPath (context,r);
CGContextFillPath (context);

A routine that strokes an oval :

void strokeOval (CGContextRef context, CGRect r)

{
/* Define the color here */
CGContextSetRGBStrokeColor (context, 1, 0, 0, 1);
addOvalToPath (context, r);



CGContextStrokePath (context) ;

Rectangles

You can simply wuse the Quartz functions CGContextStrokeRect
CGContextFillRect.

void CGContextStrokeRect (CGContextRef context, CGRect rect);

void CGContextFillRect (CGContextRef context, CGRect rect);

A routine that strokes a rectangle :

void strokeRectangle (CGContextRef context, CGRect r)
{
/* Define the color here */
CGContextSetRGBStrokeColor (context, 1, 0, 0, 1);
CGContextStrokeRect (context, r);

A routine that fills a rectangle :

void fillRectangle (CGContextRef context, CGRect r)

{
/* Define the color here */
CGContextSetRGBStrokeColor (context, 1, 0, 0, 1);
CGContextFillRect (context, r);

and


http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/c/func/CGContextFillRect
http://developer.apple.com/documentation/GraphicsImaging/Reference/CGContext/Reference/reference.html#//apple_ref/c/func/CGContextStrokeRect

Rounded Rectangles

A routine that constructs a rounded rectangle path :

volid addRoundedRectToPath (CGContextRef context, CGRect rect, float

ovalWidth, float ovalHeight)
{
float fw, fh;
if (ovalWidth == | | ovalHeight == 0)
{
CGContextAddRect (context, rect);
return;

}

CGContextSaveGState (context) ;

CGContextTranslateCTM (context, CGRectGetMinX (rect), CGRectGetMinY (rect));

CGContextScaleCTM (context, ovalWidth, ovalHeight);
fw = CGRectGetWidth (rect) / ovalWidth;

fh = CGRectGetHeight (rect) / ovalHeight;
CGContextMoveToPoint (context, fw, fh/2);
CGContextAddArcToPoint (context, fw, fh, fw/2, fh, 1);
CGContextAddArcToPoint (context, 0, fh, 0, fh/2, 1);
CGContextAddArcToPoint (context, 0, 0, fw/2, 0, 1);
CGContextAddArcToPoint (context, fw, 0, fw, fh/2, 1);
CGContextClosePath (context) ;

CGContextRestoreGState (context) ;

A routine that strokes a rounded rectangle :

void strokeRoundedRect (CGContextRef context, CGRect rect, float
float ovalHeight)

ovalWidth,



CGContextBeginPath (context) ;
addRoundedRectToPath (context, rect, ovalWidth, ovalHeight);
CGContextStrokePath (context) ;

A routine that fills a rounded rectangle :

void fillRoundedRect (CGContextRef context, CGRect rect, float ovalWidth,
float ovalHeight)
{
CGContextBeginPath (context) ;
addRoundedRectToPath (context, rect, ovalWidth, ovalHeight);
CGContextFillPath (context);

In Connect 4:

Connect 4

Player 1 wins

Let's take a look on the drawing functions of the game Connect 4. These functions are
implemented in draw.c :

- DrawARect : function used to draw a rectangles

« DrawGrid : function used to draw the grid

- DrawToken : function used to draw each piece (blue or red) of the game
« MyDrawText : function used to a specific text in the window

The prototype of theses functions are the following :

void DrawARect (WindowRef window, CGRect rect, float color[4]);

void DrawGrid (WindowRef window) ;

void MyDrawText (WindowRef window, char * text,int x,int y,int size);
void DrawToken (WindowRef window, int player, int Column, int Line);



2. Carbon in VCL

All the functions used for creating or manipulating a window are implemented is
/vcl/aqua/window/salframe.cxx. The class SalFrame is an empty box (technically an abstract class
with pure virtual methods) which is used to create a specific class in accordance with the OS used.
salframe.hxx 1s included in salframe.h existing for every single OS and which are included itself into
salframe.cxx existing for every single OS too.

How does vcl create a window ?

In order to create a window, the function CreateNewSystemWindow () has to be called.
CreateNewSystemWindow () :
The parameters are :

pParent: Handler on an existing window.
nSalFrameStyle: Give the window class and window attributes for the new window.
Possible value: (Possibility to combine: «attribute_1 | attribute_2»)

SAL_FRAME_STYLE_DEFAULT
Class: kDocumentWindowClass
Attributes: kWindowStandardHandlerAttribute
kWindowStandardDocumentAttributes

SAL_FRAME_STYLE_MOVEABLE

Class: kDocumentWindowClass
or kMovableModalWindowClass
Attributes kWindowStandardHandlerAttribute

kWindowCollapseBoxAttribute

SAL_FRAME_STYLE_SIZEABLE
Class: kDocumentWindowClass
Attributes: kWindowStandardHandlerAttribute
kWindowResizableAttribute
kWindowLiveResizeAttribute
(kWindowFullZoomAttribute)

SAL_FRAME _STYLE_CLOSEABLE
Class: kPlainWindowClass
Attributes: kWindowStandardHandlerAttribute
kWindowCloseBoxAttribute

SAL_FRAME_STYLE_NOSHADOW
Class: kPlainWindowClass
Attributes kWindowStandardHandlerAttribute
kWindowNoShadow Attribute

SAL_FRAME _STYLE _TOOLTIP
Class: kPlainWindowClass



Attributes: kWindowStandardHandlerAttribute

SAL FRAME_STYLE OWNERDRAWDECORATION
Class: kPlainWindowClass
Attributes: kWindowStandardHandlerAttribute

SAL_FRAME STYLE DIALOG
Class: kPlainWindowClass
Attributes: kWindowStandardHandlerAttribute

SAL_FRAME _STYLE_CHILD
Class: kPlainWindowClass
Attributes: kWindowStandardHandlerAttribute

SAL_FRAME_STYLE_FLOAT
Class: kPlainWindowClass
Attributes: kWindowStandardHandlerAttribute

SAL_FRAME_STYLE TOOLWINDOW
Class: kFloatingWindowClass
Attributes: kWindowStandardHandlerAttribute

SAL FRAME_STYLE INTRO
Class: kPlainWindowClass
Attributes: kWindowStandardHandlerAttribute

Create a window and put the window reference in the variable : mhWnd

Define window areas:

fullWindowRect:

contentRect:

Defined in GetOptimalWindowSize() function
Height: 400px

Width: 400px

Position of the top left corner: (100,100)

Same as kWindowContentRgn in Carbon

titleBarRect

Same as kWindowTitleBarRgn in Carbon
maGeometry: SalFrameGeometry DataStructure
nX, nY:

Top left corner of contentRect

nLeftDecoration, nRightDecoration, nTopDecoration, nBottomDecoration:
Border Decorations
nWidth, nHeight:

Size of contentRect



Event handlers :
All following event types are installed on each new window. They are installed and
registered throw the funtion InstallAndRegisterEventHandler() and uninstall and unregister with

DeinstallAndUnregisterAllEventHandler()

windowBoundsChangedEvent

Description: Indicates that the window has been moved or resized
Even Class: kEventClassWindow
Event Kind: kEventWindowBoundsChanged
windowCloseEvent
Description: Sent by the standard window handler after it has received

kEventWindowClickCloseRgn and successfully called TrackBox. Applications might intercept this
event to check if the document is dirty, and display a Save/Don'tSave/Cancel alert.

Even Class: kEventClassWindow
Event Kind: kEventWindowClose
windowActivatedEvent
Desciption: The window is active now. Sent to any window that is
activated, regardless of whether the window has the standard window handler installed.
Even Class: kEventClassWindow
Event Kind: kEventWindowActivated
windowPaintEvent
Desciption: Sent when it is time to draw the entire window (such as when

the window is first displayed). This is a convenience event that gives you a chance to draw all the
window elements at once. (not use for the moment)

Even Class: kEventClassWindow

Event Kind: kEventWindowPaint

windowDrawContentEvent

Desciption: Higher-level update event sent only if you have the standard
window handler installed.
Even Class: kEventClassWindow
Event Kind: kEventWindowDrawContent
mouseUpDownEvent|]
Desciption: A mouse button was pressed
Even Class: kEventClassMouse

Event Kind: kEventMouseDown



Desciption: A mouse button was released

Even Class: kEventClassMouse
Event Kind: kEventMouseUp
cWindowResizeStarted
Desciption: Indicates that the user has just started to resize a window. This

event is propagated to all handlers that registered for the event in the event target's handler chain,
regardless of return value. The standard window handler ignores this event.

Even Class: kEvenClassWindow

Event Kind: kEventWindowResizeStarted

cWindowResizeCompleted
Desciption: Indicates that the user has just finished resizing a window. This
event is propagated to all handlers that registered for the event in the event target's handler chain,
regardless of return value. The standard window handler ignores this event.
Even Class: kEvenClassWindow
Event Kind: kEventWindowResizeCompleted



How does VCL draw element in the window ?

All the functions used to draw in a window are implemented in the file salgdi.cxx.
Remember that the class SalGraphics, defined in salgdi.hxx is an empty box (technically an abstract
class with pure virtual methods) which is used to create a specific for each OS used. Therefore,
salgdi.hxx 1s included in salgdi.h existing for every single OS. salgdi.h is included into salgdi.cxx.

This class is the an abstract data type which can not be instantiated. It is completed for each
OS in following files:

«  Windows

Inherited class: WinSalGraphics
/vcl/win/inc/salgdi.h
/vcl/win/source/gdi/salgdi.cxx

- X1

Inherited class: X11SalGraphics
/vcl/unx/inc/salgdi.h
/vcl/unx/source/gdi/salgdi.cxx

+ Aqua

Inherited class: SalGraphics
/vcl/aqua/inc/salgdi.h
/vcl/aqua/source/gdi/salgdi.cxx

Let's take a look to some functions of salgdi.cxx (note that as the aqua version is still in
development, all the functions have not yet been implemented:

void AgquaSalGraphics::drawlLine( long nX1l, long nYl, long nX2, long n¥Y2 )
{
if ( BeginGraphics() )
{
CGContextBeginPath( mrContext );
CGContextMoveToPoint ( mrContext, nXl, n¥Yl );
CGContextAddLineToPoint ( mrContext, nX2, nY2 );
CGContextDrawPath( mrContext, kCGPathStroke );

EndGraphics () ;

}

We can see that this is the classical functions which are used to draw a line. We first create a path,
as we have seen before and then we stroke this path.



Another example of drawing function. This function draw rectangle :

void AquaSalGraphics::drawRect( long nX, long nY, long nWidth, long nHeight )
{
if ( BeginGraphics() )
{
if ( IsBrushTransparent () )
CGContextStrokeRect (mrContext, CGRectMake (nX, nY,
nWidth, nHeight));
else
CGContextFillRect (mrContext, CGRectMake (nX, nY,
nWidth, nHeight));

EndGraphics () ;

This two function use two functions called BeginGraphics() and EndGraphics() which are
implemented in salgdiutils.cxx

bool AgquaSalGraphics::BeginGraphics ()
{
if ( mrWindow != NULL )
{
SetPortWindowPort (mrWindow) ;
if ( noErr == QDBeginCGContext (GetWindowPort (mrWindow),
&mrContext))
{
// switch to HIView coordinate system, i.e. (0,0) is
top-left
Rect windowBounds;
GetWindowPortBounds ( mrWindow, &windowBounds) ;

/*

o\

fprintf (stderr, "windowPortBounds: left: %d top: %d
width: %d height: %d\n",

windowBounds.left, windowBounds.top,

windowBounds.right - windowBounds.left,
windowBounds.bottom - windowBounds.top);
*/

CGContextTranslateCTM (mrContext, 0, windowBounds.bottom
- windowBounds.top) ;
CGContextScaleCTM (mrContext, 1.0, -1.0);

// set up clipping area
if ( mrClippingPath )
{

CGContextBeginPath( mrContext ); // discard any
existing path

CGContextAddPath ( mrContext, mrClippingPath ); // set the
current path to the clipping path

CGContextClip( mrContext ); // use it for

clipping
}

// set RGB colorspace and line and fill colors
CGContextSetFillColorSpace( mrContext, mrRGBColorSpace );
CGContextSetFillColor ( mrContext, mpFillColor );
CGContextSetStrokeColorSpace( mrContext, mrRGBColorSpace );
CGContextSetStrokeColor ( mrContext, mpLineColor );

return true;

else



//fprintf (stderr, "QDBeginCGContext () error\n");

//fprintf (stderr, "BeginGraphics: mhWindow == NULL !\n");
return false;

We can see that this function is responsible of the creation of a Quartz context inside QuickDraw.
For this the function QDBegincGContext 1is used. This function defines too, the colors used to fill
and stroke path CGContextSetFillColor () and CGContextSetStrokeColor ()

On the other hand, the funcition EndGraphics () forces all drawing operations in a window
context to be rendered immediately to the destination device buy using the function
CGContextFlush (). After that, the Quart context is closed.

bool AgquaSalGraphics::EndGraphics ()
{
if ( mrContext != NULL && mrWindow != NULL )
{
CGContextFlush (mrContext) ;
QDEndCGContext (GetWindowPort (mrWindow), &mrContext);
}

return true;



Conclusion

OpenOffice.org is becoming a very popular software and not only on the opensource
community. Indeed, today, more and more people are interested in this new kind of software : both
efficiency and free at the same time. But to attract more and more users, the community have to
innovate again and again. Programmers have to create faster and simplier software to attract new
users. Nevertheless, one of the easiest way to attract more people is certainly the creation of
versions for each platform. Today, almost each platform has its version of OpenOffice.org,
Windows, Linux, Unix. Therefore, porting OpenOffice.org on Mac OS X Aqua is one of these
innovation which can bring a lot of new users. If we want to run OpenOffice.org on a new platform,
we have to update VCL, the graphic engine of OpenOffice.org. It is very important to understand
that VCL is the heart of this software. In this report, and with the help of our little application, we
have tried to explain how the Carbon API works and how it has been implemented in VCL to allow
OpenOffice.org to run on Mac OS X without X11. Nevertheless, there is always things to improve.
If we look at the VCL structure, for each new platform added, the VCL increase in size. Maybe, a
good way to improve VCL is to rethink him by using an API which exist on all the plateform, like
for instance Gtk, or Qt. But this is another story... and another TX or maybe ... a summer of Code...,
well who knows...



Bibliography

Websites :

http://www.openoffice.org
http://developer.apple.com
ftp://eric.bachard.free.fr



ftp://eric.bachard.free.fr/
http://developer.apple.com/
http://www.openoffice.org/

In a nutshell

Keywords :

OpenOffice.org
Apple

Carbon
OpenSource
API
Programmation
Linux

CVS

Project
Compilation

Summary :

Nowaydays, the project OpenOffice.org is one of the biggest project of the opensource
community. Available for the principle OS, like Linux, Mac OS X and Windows, it is a perfect
example of what the opensource community is capable of. OpenOffice.org is becoming very
popular and not only in the opensource community. But, as any other sofware there is always
something to do in order to improve it. For instance, let's take the case of the Mac OS X version of
OpenOffice.org. Today, OpenOffice.org won't running without X11, the graphic server of all the
Unix family system. By this simple observation, some developers have decided to create a version of
OpenOffice.org using instead the graphic server of Mac OS X called Quartz. If we want to run
OpenOffice.org on a new platform, we have to update VCL. VCL, for Visual Class Library is the
graphics engine of OpenOffice.org. Without it, you have nothing on your screen. It is very
important to understand that VCL is the heart of this software. In this report, and with the help of a
little application written in Carbon, we have tried to show how the Carbon API works and how it
has been implemented in VCL to allow OpenOffice.org to run on Mac OS X without X11.



kAlertWindowClass

kMovableAlertWindowClass

kModalWindowClass

kMovableModalWindowClass

kFloatingWindowClass

kDocumentWindowClass

kUtilityWindowClass
kHelpWindowClass
kSheetWindowClass
kToolbarWindowClass
kPlainWindowClass
kOverlayWindowClass
kSheetAlertWindowClass
kAltPlainWindowClass
kDrawerWindowClass

kAllWindowClasses

ANNEXE 1
WINDOW CLASSES

Identifies an alert box window.

Identifies a movable alert box window.

Identifies a modal dialog box window.

Identifies a movable modal dialog box window.

Identifies a window that floats above all document windows.
If your application assigns this constant to a window, the
Window Manager ensures that the window has the proper

floating behavior.

Identifies a document window or modeless dialog box
window.

Identifies a utility window.
Identifies a window used by Apple Help.

Identifies a sheet.

Identifies an alert sheet.

Identifies a drawer

Specifier used to designate all window classes.



ANNEXE 2
WINDOW ATTRIBUTES

kWindowNoAttributes
If no bits are set, the window has none of the following attributes.

kWindowCloseBoxAttribute
If the bit specified by this mask is set, the window has a close box.

kWindowHorizontalZoomAttribute
If the bit specified by this mask is set, the window has a horizontal zoom box.

kWindow VerticalZoomAttribute
If the bit specified by this mask is set, the window has a vertical zoom box.

kWindowFullZoomAttribute
If the bits specified by this mask are set, the window has a full—horizontal and vertical—
zoom box.

kWindowCollapseBoxAttributeRunApplicationEventLoop();
If the bit specified by this mask is set, the window has a collapse box.

kWindowResizableAttribute
If the bit specified by this mask is set, the window has a resize tab/box and is resizable.

kWindowSideTitlebarAttribute
If the bit specified by this mask is set, the window has a side title bar. This attribute may be
applied only to floating windows, that is, those windows assigned the window class constant
kFloatingWindowClass. See “Window Class Constants” for a description of this constant.

kWindowToolbarButtonAttribute
If the bit specified by this mask is set, the window has a toolbar button. This oblong clear
button shows and hides the toolbar.

kWindowMetalAttribute
If the bit specified by this mask is set, the window has a brushed-metal appearance.

kWindowNoUpdatesAttribute
If the bit specified by this mask is set, the window does not receive update events.

kWindowNoActivatesAttribute
If the bit specified by this mask is set, the window does not receive activate events.

kWindowOpaqueForEventsAttribute
If the bit specified by this mask is set, the window does not receive any events.

kWindowCompositingAttribute
If the bit specified by this mask is set, the window uses HIView-based compositing.

kWindowNoShadowAttribute



kWindowHideOnSuspendAttribute

kWindowStandardHandlerAttribute
If the bit specified by this mask is set, the window supports the standard window event
handler. The standard event handler provides standard actions for common window events.
See Inside Mac OS X: Handling Carbon Events for more details.

kWindowHideOnFullScreenAttributeRunApplicationEventL.oop();

kWindowInWindowMenuAttribute
If the bit specified by this mask is set, the window title appears in the system-generated
Window menu.

kWindowLiveResizeAttribute
If the bit specified by this mask is set, the window supports live resizing.

kWindowlIgnoreClicksAttribute
kWindowNoConstrainAttribute
kWindowStandardDocumentAttributes
If the bits specified by this mask are set, the window has the attributes of a standard
document window—that is, a close box, full zoom box, collapse box, and size box.
kWindowStandardFloatingAttributes

If the bits specified by this mask are set, the window has the attributes of a standard floating
window—that is, a close box and collapse box.



ANNEXE 3

MENU ATTRIBUTES
kMenultemAttrDisabled This menu item is disabled.
kMenultemAttrIconDisabled This menu item’s icon is disabled.

kMenultemAttrSubmenuParentChoosable The user can select the parent item of a submenu.

kMenultemAttrDynamic
This menu item changes dynamically based on the state of the modifier keys. For example,
holding down the command key might change the menu item from “Select widget” to
“Select all widgets.”
When a menu item has alternate dynamic states, you should group them together
sequentially in the menu and assign them the same command key. A collection of menu
item alternates is called a dynamic group.

kMenultemAttrNotPreviousAlternate
This item is not part of the same dynamic group as the previous item. The Menu Manager
determines which menu items belong to a dynamic group by examining the command keys
of each item; if a menu item has the same command key as the previous item, the Menu
Manager considers it to be part of the same dynamic group.
However, in some cases you may have sequential items with the same command key (or no
command key at all) that should not be considered part of the same dynamic group. To
distinguish the separation, you should set this flag for the first menu item in the new

group.

kMenultemAttrHidden
The menu item is not drawn when displaying the menu. The item is also not included in
command-key matching unless the kMenultemAttrDynamic or
kMenultemIncludeInCmdKeyMatching attribute is set.

kMenultemAttrSeparator
The menu item is a separator; any text in the item is ignored.

kMenultemAttrSectionHeader
The menu item is a menu section header; this item is disabled and not selectable.

kMenultemAttrlgnoreMeta
Ignore the dash (-) metacharacter in this menu item. Dashes at the beginning of a menu item
title traditionally signify that the menu item is a separator. However, in some cases you
might want to display the dash in the title (for example, if you wanted the menu item to read
“-40 degrees F.”)

kMenultemAttrAutoRepeat



The IsMenuKeyEvent event function recognizes this menu item when it receives an
autorepeat keyboard event.

kMenultemAttrUseVirtualKey
When MenuEvent and IsMenuKeyEvent compare this menu item’s keyboard equivalent
against a keyboard event, they use the item’s virtual keycode equivalent rather than its
character code equivalent.

kMenultemAttrCustomDraw
This is a custom menu item. Setting this attribute causes custom menu item drawing Carbon
events to be sent to your application.

kMenultemAttrIncludeInCmdKeyMatching
If this attribute is set, functions such as MenuKey, MenuEvent and IsMenuKeyEvent
examine this menu item during command key matching. Typically, visible items are
examined and hidden items (unless they have the kMenultemAttrDynamic attribute set) are
ignored during command key matching. However, by setting this attribute, you can force
hidden items to be included in the matching

kMenultemAttrAutoDisable
Disables the menu item if it does not respond to the kEventCommandUpdateStatus event .
That is, if no kEventCommandUpdateStatus handler is installed on this item, or if all the
handlers installed for the update event return eventNotHandledErr, this item is automatically
disabled. This attribute is useful if your application uses the kEventCommandUpdateStatus
event to enable menu items; for example you no longer have to install an update status
handler on the application target to disable menu items when there are no document
windows open.

kMenultemAttrUpdateSingleltem

Update only the menu item that matches when searching available command keys. Normally
when the Menu Manager does command key matching, it sends a kEventMenuEnableltems
event to the menu containing the matching item and then sends a
kEventCommandUpdateStatus to each item in the menu. Doing so can be inefficient, since
in most cases only the item that matches needs to be updated. By setting this attribute, only
the matching item receives the update event and kEventMenuEnableltems is not sent to the
menu. If your application enables menu items solely through kEventCommandUpdateStatus
event handlers, you should set this attribute for your menu items.



Event Class

kEventClassMouse

ANNEXE 4
Event Classes

Constant Descriptions

Events related to the mouse (mouse down/up/moved).

kEventClassKeyboardEvents related to the keyboard.

kEventClassTextInput Events related to text input (by keyboard or by input method).

kEventClassApplication
kEventClassAppleEvent
kEventClassMenu
kEventClassWindow
kEventClassControl
kEventClassCommand
kEventClassTablet
kEventClassVolume
kEventClassAppearance
kEventClassService
kEventClassToolbar
kEventClassToolbarltem

kEventClassAccessibility

Application-level events (launch, quit, and so on.).
Apple Events.

Menu-related events.

Window-related events.

Control-related events.

Command events (HICommands).

Events related to tablet input.

Events related to File Manager volumes.

Events related to the Appearance Manager.

Events related to the Services Manager.

Events related to the toolbar (not the toolbar window class).
Events related to toolbar items.

Events related to application accessibility features.



ANNEXE 5
Connect 4 : Sourcecode

main.c

#include "include.h"
#include "divers/draw.h"
#include "window/window.h"
#include "event/event.h"
#include "game.h"

int main(int argc, char* argvl[])

{

P4_t* pd=malloc(sizeof (p4_t));
p4->player=1;
p4->window=NULL;
p4->game=INMENU;
init_tab(pd->t);
p4->Ptype=CP;

// Create the main window
pd4->window = pd4CreateNewWindow () ;

InstallMouseEvent (p4);

// Display the grid of the P4
DrawGrid (p4->window) ;

//Display the title
MyDrawText (p4->window, "Connect 4", 200, 450,35);

// Run the event loop
RunApplicationEventLoop () ;

return 1;

include.h

#ifndef __ INCLUDE_H_
#define __ INCLUDE_H_

#include <Carbon/Carbon.h>

// Game Constants
#define INGAME O
#define INMENU 1
#define CP 1
#define HUM 0

// Window Constants
#define WindowWidth 600
#define WindowHeight 500

// Grid Constants
#define Grid_spacing 60
#define Grid_NbColumn 7
#define Grid_NbLine 6



#define Grid_BorderWidth 2
#define Grid_x 60
#define Grid_y 60

typedef struct {
WindowRef window;
short int game;
int Ptype;
int player;
char t[Grid_NbLine] [Grid_NbColumn] ;

} pa_t;

#endif

window.c

#include "window.h"
WindowRef p4CreateNewWindow ()

{
WindowRef window=NULL;

WindowClass windowClass = kDocumentWindowClass;
WindowAttributes attributes =
kWindowStandardHandlerAttribute;
attributes |= kWindowStandardFloatingAttributes ;
// attributes =
kWindowStandardDocumentAttributes;
// attributes |= kWindowLiveResizeAttribute;
// Window size
Rect contentBounds;
// Set content rectangle order : Left,Top,Right,Bottom
SetRect (&contentBounds, 100,100,100+WindowWidth, 100+WindowHeight) ;

CreateNewWindow (windowClass,attributes, &contentBounds, &window) ;

// Diplay the window
ShowWindow ( window ) ;

return window;

event.c

#include "event.h"

pascal OSStatus mouse_event (EventHandlerCallRef handlerRef, EventRef event, p4_t
*p4 )
{

int column, line;

Point wheresMyMouse;

// Give the Mouse position in the var wheresMyMouse from the top left
corner of the screen

GetEventParameter ( event, kEventParamMouselLocation, typeQDPoint, NULL,
sizeof (Point), NULL, &wheresMyMouse);

Rect globalBounds;

// Give the position of the window in the var globalBounds
GetWindowBounds (p4->window, kWindowContentRgn, &globalBounds) ;
// Calculate new-coordinate
wheresMyMouse.h-=globalBounds.left;



wheresMyMouse.v-=globalBounds.top;

column=WhichColumn (wheresMyMouse.h, wheresMyMouse.V) ;
line=WhichLine (wheresMyMouse.h, wheresMyMouse.vV) ;

if(column!=-1 && line!=-1 && p4->t[line] [column]==" "' && ( line== || pd-
>t [line-1] [column]!=" "' ) )
{
DrawToken (p4->window, pd4d—->player, column, line);
//PLAYER 1
if (pd->player==1)
{
p4->t[line] [column]="X";
if(win(p4->t,pé4->player))
{
MyDrawText (p4->window, "Player 1 wins" ,180,20,30);
RemoveEventHandler ( (EventHandlerRef)handlerRef) ;

}

// COMPUTER
else 1if( p4->Ptype==CP)
{
int i,k,Bot;
// Search the best place to put the token

do
{
Bot=bot (pd4d->t, 2);
k=0;
i=0;
while (i<=5 && k==0)
{
if (p4->t[i][Bot]l=="X" || p4-
>t [1] [Bot]=="0") {i++;}
else {k=1;}
}
} while (k==0);

p4->t[i] [Bot]='0";
DrawToken (p4->window, 2, Bot, 1i);

if (win(pd->t,2))
{

MyDrawText (p4->window, "Computer wins"
,180,20,30);
RemovekEventHandler ( (EventHandlerRef)handlerRef) ;

else
pd4->player=2;
}

//PLAYER 2
else

{
p4->t[line] [column]='0";

if (win(p4->t,p4->player))

{
MyDrawText (p4->window, "Player 2 wins" ,180,20,30);
RemovekEventHandler ( (EventHandlerRef)handlerRef) ;

}

pé4->player=1;



// Removes all events from the main event queue.
FlushEventQueue (GetMainEventQueue ());

// Now propagate the event to the next handler
CallNextEventHandler ( handlerRef, event);

return nokrr;

}

void InstallMouseEvent (p4_t* p4)
{

EventTypeSpec eventType;
eventType.eventClass = kEventClassMouse; // Set event class
eventType.eventKind = kEventMouseDown; // Set event kind
InstallWindowEventHandler (p4->window,
NewEventHandlerUPP ( (EventHandlerProcPtr)mouse_event), 1, &eventType, p4 , NULL);
}
draw.c

#include "draw.h"
void DrawARect (WindowRef window, CGRect rect,float color[4])
{
// color[4] {red,green,blue,alpha}
CGContextRef myContext;
SetPortWindowPort (window) ;
Rect globalBounds;
// give the position of the window in the var globalBounds
GetWindowBounds (window, kWindowContentRgn, &globalBounds) ;
QDBeginCGContext (GetWindowPort (window), &myContext);
CGContextSetRGBFillColor (myContext,
color([0],color[l],color([2],color[3]);
CGContextFillRect (myContext, rect);
CGContextFlush (myContext) ;

QDEndCGContext (GetWindowPort (window), &myContext);
}

void DrawToken (WindowRef window, int player, int Column, int Line)

{
int color[4]={0,0,0,1};//{red,green,blue,alpha}
if (player==1) color[0]=1; //red
else color[2]=1; //blue

CGRect rect = CGRectMake (Grid_x+Column*Grid_spacing +(Grid_spacing-—
30)/2,Grid_y+Line*Grid_spacing+ (Grid_spacing-30)/2,30,30);

CGContextRef myContext;
SetPortWindowPort (window) ;
Rect globalBounds;

// give the position of the window in the var globalBounds
GetWindowBounds (window, kWindowContentRgn, &globalBounds) ;



QDBeginCGContext (GetWindowPort (window), &myContext);

CGContextSetRGBRFillColor (myContext,
color[0],color[1l],color([2],color[3]);
CGContextFillRect (myContext, rect);

CGContextFlush (myContext) ;

QDEndCGContext (GetWindowPort (window), &myContext);

voilid DrawGrid (WindowRef window)
{
float color([4]={0,0,0,1};
int i=0;
//Horizontal lines
for(i=0;1i<Grid_NbLine+1;i++)
DrawARect (window, CGRectMake( Grid_x , Grid_y + Grid_spacing*i
Grid_NbColumn * Grid_spacing , Grid_BorderWidth ) , color );

//vertical line
for (i=0;i<Grid_NbColumn+1;i++)
DrawARect (window, CGRectMake (Grid_x + Grid_spacing*i , Grid_y
,Grid_BorderWidth , Grid_NbLine * Grid_spacing ) , color );

}
void MyDrawText (WindowRef window, char * text,int x,int y,int size)

{
CGContextRef myContext;

QDBeginCGContext (GetWindowPort (window), &myContext);
CGContextSelectFont (myContext,"Times-Bold", size,
kCGEncodingMacRoman) ;
CGContextShowTextAtPoint (myContext, x, y, text , strlen(text));
CGContextFlush (myContext) ;

QDEndCGContext (GetWindowPort (window), &myContext);



Public Documentation License Notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the "License"); you may only use this Documentation if you comply with the terms of this License.
A copy of the License is available at http.//www.openoffice.org/licenses/PDL.html .

The Original Documentation is Carbon_VCL.odt . The Initial Writers of the Original
Documentation is Barb Yann and Mohr Alexandre Copyright © 2006 /. All Rights Reserved. (Initial
Writer contact(s): amohr3010@ gmail.com, yann.barb@wanadoo.fr ).

Contributor(s):
Portions created by are Copyright © [Insert year(s)] . All Rights Reserved.
(Contributor contact(s): [Insert hyperlink/alias] ).

NOTE: The text of this Appendix may differ slightly from the text of the notices in the files of the
Original Documentation. You should use the text of this Appendix rather than the text found in the
Original Documentation for Your Modifications.


mailto:amohr3010@gmail.com
http://www.openoffice.org/licenses/PDL.html

